
 

 

Front-Propaga+on Algorithm 
 
Rezon explains the reasoning of Neural Networks with an in-house developed algorithm that we 
called Front-Propaga=on. 
 
The Front-Propaga=on algorithm is able to extract the linear func=on explana=on that 
approximates the behavior of a Neural Network in the vicinity of a given instance (also called the 
base instance). In other words, the algorithm generates a linear func=on that can replace the 
Neural Network and s=ll perform well for other datapoints that are close to the base instance. 
The plot below shows an example comparison in the outputs predicted with a given Neural 
Network versus the outputs obtained with the Linear Func=on approxima=on of this NN for a 
cloud of points near the base instance. 
 

 
The informa=on of the linear func=on approxima=on is very relevant in various applica=ons, not 
only to quan=fy the contribu=ons of each of the input dimensions, but also to determine if the 
network is following a biased reasoning, an outlier reasoning, to supervise its behavior, and to 
extract relevant knowledge of the problem. 
 
To describe the inner workings of the algorithm, we first consider a simple feed-forward neural 
network with 𝐻 hidden layers that performs a transforma=on from a 𝑁!"-dimensional input space 
𝐱 = {𝑥#, 𝑥$, … , 𝑥%!"} into a 𝑁&'(-dimensional output space 𝐲+ = {𝑦+#, 𝑦+#, … , 𝑦+%#$%}. 
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The objec=ve of the Front-Propaga=on algorithm is to find the linear func=on that approximates 
the behavior of the neural network in the genera=on of a specific output. To do so, the algorithm 
traverses all the layers in a forward-pass (from input to output), studying all the parameters of 
the network. 
 
What is the difference between Front-Propaga6on and Back-Propaga6on? 
 

• The Back-Propaga=on algorithm calculates the gradient of the loss func=on with respect 
to the weights and biases, and then corrects those parameters to op=mize the network.  

 
• The Front-Propaga=on algorithm on the other hand calculates the gradient of the outputs 

with respect to the inputs, which then serve as an explana=on of the network’s reasoning. 
 
Both the Back and Front propaga=on algorithms are triggered aLer the network has made a 
predic=on. In the first case to correct and in the second to understand the network.  
 
The Back-Propaga=on traverses the network from the output to the input, but the Front-
Propaga=on traverses the network from the input to the output. 
 
The name Front-Propaga=on was inspired on these similari=es with the Back-Propaga=on and the 
fact that studies the network in the opposite direc=on. 
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How does it work?  
 

Let ‘s consider a generic 𝑘-th neuron of an arbitrary intermediate layer 𝑙). The input sent 
to this neuron is the sum of the product between 𝐭(𝐡,𝟏) and 𝐰𝐡,𝐤 plus the bias. Where 
𝐭(𝐡,𝟏) represents the intermediate output vector of the previous layer (𝑙),#), and 𝐰𝐡,𝐤 
the weight vector of the neuron of interest. The output of the neuron, denoted by 𝐭(𝐡)𝒌, 
is obtained by mapping this value with the ac=va=on func=on 𝑔),2. In formula=on, 𝐭(𝐡)𝒌 =

𝑔),2 2𝑏),2 + ∑ 𝑤),2,3 ∙4
35# 𝑡(),#)&9.  

 
 

 
 
If the neuron chosen is the 𝑝-th neuron of the layer 𝑙6, then 𝐭(𝐇)𝒑 = 𝑔6,92𝑏6,9 +

∑ 𝑤6,9,3 ∙
%!"
35# 𝑥39. For the Front-Propaga=on, instead of subs=tu=ng 𝑥3  with the 

corresponding values of the instance studied, we preserve 𝑥3  as a placeholder variable 
that iden=fies the 𝑗-th input dimension. The goal is to find the linear dependencies that 
relate the input and the output spaces. That is why we do not want to subs=tute 𝐱 un=l 
we have finished traversing the en=re network. 
 
At this point, the argument 𝑠(𝐱) of 𝑔6,9(𝑠(𝐱)) is in fact a linear combina=on of the input 
dimensions, but the ac=va=on func=on introduces a non-linearity. Thus, to find the linear 
dependencies between 𝐭(𝐇)𝒑 and the input dimensions 𝑥3, we find the tangent linear 

func=on that approximates the ac=va=on func=on for the 𝑖-th instance studied. 
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We then plug the linear func=on 𝑠(𝐱) inside the tangent linear func=on of 𝑔6,9, which we 
denote as 𝑞6,9,!(𝑠). Note that 𝑞6,9,!(𝑠) depends on the 𝑖-th instance chosen. The result is 
𝑟6,9(𝐱), a new linear func=on that relates the output of this neuron with the input 
dimensions,  

𝑟6,9(𝐱) = 𝑞6,9,!(𝑠6,9(𝐱)) 
 

This process can be done for all the neurons of the layer. Once its finished, we then 
aggregate all the output linear func=ons 𝑟6,9(𝐱) with the corresponding weights of the 
layer in order to generate the next input linear func=ons 𝑠6:#,2(𝐱) for every 𝑘-th neuron 
of the next layer, 

𝑠6:#,2(𝐱) = 𝑏6:#,2 +B𝑤6:#,2,3 ∙
4

35#

𝑟6,3  

Following this same strategy in every neuron of the network and regrouping the 
parameters we can obtain the linear output func=on of each neuron. Once we arrive at 
the output layer of the Neural Network we obtain the linear func=on that we were 
searching for. 

 
 
 
 
 
 
 

 
 
 
 

𝑔𝐻,𝑝 Activation
Function

𝑞𝐻,𝑝,𝑖 Tangent
Function

𝐭 𝐇 𝒑,𝒊

𝑠
𝑠𝑖


