

Front-Propaga+on Algorithm

Rezon explains the reasoning of Neural Networks with an in-house developed algorithm that we
called Front-Propaga=on.

The Front-Propaga=on algorithm is able to extract the linear func=on explana=on that
approximates the behavior of a Neural Network in the vicinity of a given instance (also called the
base instance). In other words, the algorithm generates a linear func=on that can replace the
Neural Network and s=ll perform well for other datapoints that are close to the base instance.
The plot below shows an example comparison in the outputs predicted with a given Neural
Network versus the outputs obtained with the Linear Func=on approxima=on of this NN for a
cloud of points near the base instance.

The informa=on of the linear func=on approxima=on is very relevant in various applica=ons, not
only to quan=fy the contribu=ons of each of the input dimensions, but also to determine if the
network is following a biased reasoning, an outlier reasoning, to supervise its behavior, and to
extract relevant knowledge of the problem.

To describe the inner workings of the algorithm, we first consider a simple feed-forward neural
network with 𝐻 hidden layers that performs a transforma=on from a 𝑁!"-dimensional input space
𝐱 = {𝑥#, 𝑥$, … , 𝑥%!"} into a 𝑁&'(-dimensional output space 𝐲+ = {𝑦+#, 𝑦+#, … , 𝑦+%#$%}.

Comparison of Outputs for 𝑖-th Instance
Linear Func+on Approxima+on (LF) vs Neural network (NN)

Euclidean Distance
to Base Instance

O
ut

pu
t P

re
di

ct
ed

 w
ith

 L
F

Output Predicted with NN

Base Instance

The objec=ve of the Front-Propaga=on algorithm is to find the linear func=on that approximates
the behavior of the neural network in the genera=on of a specific output. To do so, the algorithm
traverses all the layers in a forward-pass (from input to output), studying all the parameters of
the network.

What is the difference between Front-Propaga6on and Back-Propaga6on?

• The Back-Propaga=on algorithm calculates the gradient of the loss func=on with respect
to the weights and biases, and then corrects those parameters to op=mize the network.

• The Front-Propaga=on algorithm on the other hand calculates the gradient of the outputs

with respect to the inputs, which then serve as an explana=on of the network’s reasoning.

Both the Back and Front propaga=on algorithms are triggered aLer the network has made a
predic=on. In the first case to correct and in the second to understand the network.

The Back-Propaga=on traverses the network from the output to the input, but the Front-
Propaga=on traverses the network from the input to the output.

The name Front-Propaga=on was inspired on these similari=es with the Back-Propaga=on and the
fact that studies the network in the opposite direc=on.

⋮

⋮⋮ ⋮
⋮ ⋮

𝑥1
𝑥2

𝑥𝑁𝑖𝑛 𝑦𝑁𝑜𝑢𝑡

𝑦2

𝑦1

𝑙1𝑙𝐻−1𝑙𝐻

Prediction

Back − Propagation

Front − Propagation

Directions	
of	Data	Flow

Input Output

Layers

How does it work?

Let ‘s consider a generic 𝑘-th neuron of an arbitrary intermediate layer 𝑙). The input sent
to this neuron is the sum of the product between 𝐭(𝐡,𝟏) and 𝐰𝐡,𝐤 plus the bias. Where
𝐭(𝐡,𝟏) represents the intermediate output vector of the previous layer (𝑙),#), and 𝐰𝐡,𝐤
the weight vector of the neuron of interest. The output of the neuron, denoted by 𝐭(𝐡)𝒌,
is obtained by mapping this value with the ac=va=on func=on 𝑔),2. In formula=on, 𝐭(𝐡)𝒌 =

𝑔),2 2𝑏),2 + ∑ 𝑤),2,3 ∙4
35# 𝑡(),#)&9.

If the neuron chosen is the 𝑝-th neuron of the layer 𝑙6, then 𝐭(𝐇)𝒑 = 𝑔6,92𝑏6,9 +

∑ 𝑤6,9,3 ∙
%!"
35# 𝑥39. For the Front-Propaga=on, instead of subs=tu=ng 𝑥3 with the

corresponding values of the instance studied, we preserve 𝑥3 as a placeholder variable
that iden=fies the 𝑗-th input dimension. The goal is to find the linear dependencies that
relate the input and the output spaces. That is why we do not want to subs=tute 𝐱 un=l
we have finished traversing the en=re network.

At this point, the argument 𝑠(𝐱) of 𝑔6,9(𝑠(𝐱)) is in fact a linear combina=on of the input
dimensions, but the ac=va=on func=on introduces a non-linearity. Thus, to find the linear
dependencies between 𝐭(𝐇)𝒑 and the input dimensions 𝑥3, we find the tangent linear

func=on that approximates the ac=va=on func=on for the 𝑖-th instance studied.

𝐭(𝐡+𝟏) =

𝑡 ℎ+1 1
𝑡 ℎ+1 2
𝑡 ℎ+1 3
𝑡 ℎ+1 4
⋮

𝑡 ℎ+1 𝛼

Intermediate
	Output	Vector	
of	Layer	ℎ + 1 Layer	𝑙ℎ

Neuron	𝑘

	

𝑡(ℎ)1
𝑡(ℎ)2
⋮

𝑡(ℎ)𝑘
⋮

𝑡(ℎ)𝛽

= 𝐭(𝐡+𝟏)
⋮

𝑤ℎ,𝑘,1

𝑤ℎ,𝑘,2
𝑤ℎ,𝑘,3
𝑤ℎ,𝑘,4

𝑤ℎ,𝑘,𝛼

𝑡(ℎ)𝑘

𝑏ℎ,𝑘

Intermediate
	Output	Vector	
of	Layer	ℎ

We then plug the linear func=on 𝑠(𝐱) inside the tangent linear func=on of 𝑔6,9, which we
denote as 𝑞6,9,!(𝑠). Note that 𝑞6,9,!(𝑠) depends on the 𝑖-th instance chosen. The result is
𝑟6,9(𝐱), a new linear func=on that relates the output of this neuron with the input
dimensions,

𝑟6,9(𝐱) = 𝑞6,9,!(𝑠6,9(𝐱))

This process can be done for all the neurons of the layer. Once its finished, we then
aggregate all the output linear func=ons 𝑟6,9(𝐱) with the corresponding weights of the
layer in order to generate the next input linear func=ons 𝑠6:#,2(𝐱) for every 𝑘-th neuron
of the next layer,

𝑠6:#,2(𝐱) = 𝑏6:#,2 +B𝑤6:#,2,3 ∙
4

35#

𝑟6,3

Following this same strategy in every neuron of the network and regrouping the
parameters we can obtain the linear output func=on of each neuron. Once we arrive at
the output layer of the Neural Network we obtain the linear func=on that we were
searching for.

𝑔𝐻,𝑝 Activation
Function

𝑞𝐻,𝑝,𝑖 Tangent
Function

𝐭 𝐇 𝒑,𝒊

𝑠
𝑠𝑖

